1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka-Z-Leto [24]
2 years ago
14

Can someone help me plz!!! It’s 23 points

Engineering
1 answer:
Marina86 [1]2 years ago
5 0

Answer:

0.00695 A

Explanation:

µ represents 10^{-6}. Multiply this by 6,950.

You might be interested in
C++ - Green Crud Fibonacci programThe following program is to be written with a loop. You are to write this program three times
Fynjy0 [20]

Answer:

Below is the required code:

Explanation:

Using for loop

#include <iostream>

using namespace std;

int main()

{

    //Initial crud size

    int init = 0;

    int newCrud;

    int next=0;

    //Number of days to simulate

    int no_days;

    int day;

    cout << "Enter initial amount of green crud: ";

    cin >> newCrud;

    cout << "Enter number of days to simulate: ";

    cin >> no_days;

    for (day = 10; day<=no_days; day++)

    {

         if (day % 10 == 0)

         {

             next = newCrud + init;

         }

             newCrud = init;

             init = next;

    }

    if (no_days < 5)

    cout << "\nCrud reproduce only after 5 days minimum.Hence the current amount is "

    << newCrud << " pounds.";

    else

    cout << "On day " << no_days << " you have " << init

    << " pounds of green crud." << endl;

    cout << "\nWould you like to continue? (y or n): ";

    cin >> ans;

         return 0;

}

Output:

         Enter initial amount of green crud: 5

         Enter number of days to simulate: 220

    On day 220 you have 10485760 pounds of green crud.

Using while loop

Program:

#include <iostream>

using namespace std;

int main()

{

    char ans='y';

    while (ans == 'Y' || ans == 'y')

    {

         //Initial crud size

         int init = 0;

         int newCrud;

         int next=0;

         //Number of days to simulate

         int no_days;

         int day;

         cout << "Enter initial amount of green crud:

         ";

         cin >> newCrud;

         cout << "Enter number of days to simulate:

         ";

         cin >> no_days;

         for (day = 10; day<=no_days; day++)

         {

             if (day % 10 == 0)

             {

                  next = newCrud + init;

             }

                  newCrud = init;

                  init = next;

         }

         if (no_days < 5)

         cout << "\nCrud reproduce only after 5 days

         minimum.Hence the current amount is "

         << newCrud << " pounds.";

         else

         cout << "On day " << no_days << " you have "

         << init

         << " pounds of green crud." << endl;

         cout << "\nWould you like to continue? (y or

         n): ";

         cin >> ans;

    }

    return 0;

}

Output:

Enter initial amount of green crud: 5

Enter number of days to simulate: 220

On day 220 you have 10485760 pounds of green crud.

Would you like to continue? (y or n): y

Enter initial amount of green crud: 5

Enter number of days to simulate: 225

On day 225 you have 10485760 pounds of green crud.

Using do while loop

Program:

#include <iostream>

using namespace std;

int main()

{

    char ans;

    do

    {

         //Initial crud size

         int init = 0;

         int newCrud;

         int next=0;

         //Number of days to simulate

         int no_days;

         int day;

         cout << "Enter initial amount of green crud: ";

         cin >> newCrud;

         cout << "Enter number of days to simulate: ";

         cin >> no_days;

         for (day = 10; day<=no_days; day++)

         {

             if (day % 10 == 0)

             {

                  next = newCrud + init;

             }

                  newCrud = init;

                  init = next;

         }

         if (no_days < 5)

         cout << "\nCrud reproduce only after 5 days

         minimum.Hence the current amount is "

         << newCrud << " pounds.";

         else

         

         cout << "On day " << no_days << " you have " <<

         init << " pounds of green crud." << endl;

         cout << "\nWould you like to continue? (y or n):

         ";

         cin >> ans;

    } while (ans == 'Y' || ans == 'y');

    return 0;

}

Output:

Enter initial amount of green crud: 5

Enter number of days to simulate: 220

On day 220 you have 10485760 pounds of green crud.

Would you like to continue? (y or n): y

Enter initial amount of green crud: 5

Enter number of days to simulate: 225

On day 225 you have 10485760 pounds of green crud.

7 0
3 years ago
Two small balls A and B with masses 2m and m respectively are released from rest at a height h above the ground. Neglecting air
statuscvo [17]

Answer:

The kinetic energy of A is twice the kinetic energy of B

Explanation:

5 0
3 years ago
Should the ship breaking business continue why or why not?
Dmitry [639]

Answer:

Ship-breaking or ship demolition is a type of ship disposal involving the breaking up of ships for either a source of parts, which can be sold for re-use, or for the extraction of raw materials, chiefly scrap. It may also be known as ship dismantling, ship cracking, or ship recycling. Modern ships have a lifespan of 25 to 30 years before corrosion, metal fatigue and a lack of parts render them uneconomical to operate.[1] Ship-breaking allows the materials from the ship, especially steel, to be recycled and made into new products. This lowers the demand for mined iron ore and reduces energy use in the steel making process. Fixtures and other equipment on board the vessels can also be reused. While ship-breaking is sustainable, there are concerns about the use of poorer countries without stringent environmental legislation. It is also labor-intensive, and considered one of the world's most dangerous industries.[2]

In 2012, roughly 1,250 ocean ships were broken down, and their average age was 26 years.[3][4] In 2013, the world total of demolished ships amounted to 29,052,000 tonnes, 92% of which were demolished in Asia. As of January 2020, India has the largest global share at 30%;[5] followed by Bangladesh, China and Pakistan.[6] Alang, India currently has the world's largest ship graveyard,[5] followed by Chittagong Ship Breaking Yard in Bangladesh and Gadani in Pakistan.[6]

The largest sources of ships are states of China, Greece and Germany respectively, although there is a greater variation in the source of carriers versus their disposal.[7] The ship-breaking yards of India, Bangladesh, China and Pakistan employ 225,000 workers as well as providing many indirect jobs. In Bangladesh, the recycled steel covers 20% of the country's needs and in India it is almost 10%.[8]

As an alternative to ship-breaking, ships may be sunk to create artificial reefs after legally-mandated removal of hazardous materials, or sunk in deep ocean waters. Storage is a viable temporary option, whether on land or afloat, though all ships will be eventually scrapped, sunk, or preserved for museums.

6 0
3 years ago
A pipeline (NPS = 14 in; schedule = 80) has a length of 200 m. Water (15℃) is flowing at 0.16 m3/s. What is the pipe head loss f
dangina [55]

Answer:

Head loss is 1.64

Explanation:

Given data:

Length (L) = 200 m

Discharge (Q) = 0.16 m3/s

According to table of nominal pipe size , for schedule 80 , NPS 14,  pipe has diameter (D)= 12.5 in or 31.8 cm 0.318 m

We know, head\ loss  = \frac{f L V^2}{( 2 g D)}

where, f = Darcy friction factor

V = flow velocity

g = acceleration due to gravity

We know, flow rate Q = A x V

solving for V

V = \frac{Q}{A}

    = \frac{0.16}{\frac{\pi}{4} (0.318)^2} = 2.015 m/s

obtained Darcy friction factor  

calculate Reynold number (Re) ,

Re = \frac{\rho V D}{\mu}

where,\rho = density of water

\mu = Dynamic viscosity of water at 15 degree  C = 0.001 Ns/m2

so reynold number is

Re = \frac{1000\times 2.015\times 0.318}{0.001}

            = 6.4 x 10^5

For Schedule 80 PVC pipes , roughness (e) is  0.0015 mm

Relative roughness (e/D) = 0.0015 / 318 = 0.00005

from Moody diagram, for Re = 640000 and e/D = 0.00005 , Darcy friction factor , f = 0.0126

Therefore head loss is

HL = \frac{0.0126 (200)(2.015)^2}{( 2 \times 9.81 \times 0.318)}

HL = 1.64 m

7 0
3 years ago
What can be the main disadvantage of pulse amplitude modulation?​
Feliz [49]

Answer:

transmission bandwidth required is very large.

Explanation:

4 0
2 years ago
Other questions:
  • A 300 mm long steel bar with a square cross section (25 mm per edge) is pulled in tension with a load of 83,051 N , and experien
    10·1 answer
  • A rigid tank with a volume of 4 m^3 contains argon at 500 kPa and 30 deg C. It is connected to a piston cylinder (initially empt
    14·1 answer
  • Calculate the rate at which body heat is conducted through the clothing of a skier in a steady- state process, given the followi
    10·1 answer
  • The steel 4140 steel contains 0.4% C, however, it shows higher yield strength and ultimate strength than that of the 1045 (0.45%
    14·1 answer
  • Ear "popping" is an unpleasant phenomenon sometimes experienced when a change in pressure occurs, for example in a
    12·1 answer
  • Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per
    9·1 answer
  • A heat recovery system​ (HRS) is used to conserve heat from the surroundings and supply it to the Mars Rover. The HRS fluid loop
    12·1 answer
  • How many volts of electricity would it take to power up an entire city? Take Tokyo for example. Please explain!
    12·1 answer
  • We are given a CSP with only binary constraints. Assume we run backtracking search with arc consistency as follows. Initially, w
    8·1 answer
  • 3.8 LAB - Select lesson schedule with multiple joins
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!