Answer: V = 
Step-by-step explanation: A solid formed by revolving the region about the x-axis can be considered to have a thin vertical strip with thickness Δx and height y = f(x). The strip creates a circular disk with volume:
V =
Δx
Using the <u>Disc</u> <u>Method</u>, it is possible to calculate all the volume of these strips, giving the volume of the revolved solid:
V = 
Then, for the region generated by y = - x + 4:
V = 
V = 
V = 
V = 
V = 
The volume of the revolved region is V =
Answer:
1 71years
Step-by-step explanation:
x+10=81
x=71
2. x+8=49
x=41
3. x+11=100
x=99
Answer:
(3, 4)
Step-by-step explanation:
Answer:
x = -1.14 or -13.14
Explanations:
The given equation is:

Find the half of 12, and add the square to both sides of the equation.
That is add 6² to both sides


Find the square root of both sides:
![\begin{gathered} \sqrt[]{(x+6)^2_{}}=\pm\sqrt[]{51} \\ \text{x + 6 = }\pm\sqrt[]{51} \\ x\text{ = -6 }\pm\sqrt[]{51} \\ \text{x = }-6\pm7.14 \\ x\text{ = -6+7.14 = }1.14 \\ x\text{ = -6 - 7.14} \\ \text{x = -13.14} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csqrt%5B%5D%7B%28x%2B6%29%5E2_%7B%7D%7D%3D%5Cpm%5Csqrt%5B%5D%7B51%7D%20%5C%5C%20%5Ctext%7Bx%20%20%2B%20%206%20%20%3D%20%7D%5Cpm%5Csqrt%5B%5D%7B51%7D%20%5C%5C%20x%5Ctext%7B%20%20%3D%20%20-6%20%20%7D%5Cpm%5Csqrt%5B%5D%7B51%7D%20%5C%5C%20%5Ctext%7Bx%20%20%3D%20%7D-6%5Cpm7.14%20%5C%5C%20x%5Ctext%7B%20%20%3D%20-6%2B7.14%20%20%3D%20%7D1.14%20%5C%5C%20x%5Ctext%7B%20%3D%20-6%20-%207.14%7D%20%5C%5C%20%5Ctext%7Bx%20%3D%20-13.14%7D%20%5Cend%7Bgathered%7D)
x = -1.14 or -13.14