It would be <span>A: A contains sugar and B contains salt, because salt is ionic and a good conductor of electricity.</span>
67.0 Should be th3 answer
The first system to classify blood types is known as<u> A-B-O system</u>.
<u>Option: D</u>
<u>Explanation:</u>
The blood group system "ABO" is the categorizing of human blood centered on the hereditary characteristics of red blood cells means erythrocytes as measured by the presence or absence of A and B antigens on the surface of the red cells. Thus individuals may well have blood type A, type B, type O or type AB.
It was absent until 1900, when Karl Landsteiner established the concept at the Vienna University why some blood transfusions were effective while others were lethal. Landsteiner established the blood group mechanism ABO by combining each of his staff's red cells and serum.
The change in the internal energy of the gas is 1.5×10∧3 J.
The internal energy of an ideal gas is directly proportional to the temperature of the gas:
ΔE = 3/2 × n × R × ΔT
ΔT = 320 K - 260 K
ΔT = 60 K; change of the temperature
n = 2.0 mol: amount of a monatomic ideal gas
R = 8.1 J/mol×K;the ideal gas constant
ΔE = 3/2 × 2 mol × 8.1 J/mol×K × 60 K
ΔE = 1500 J
ΔE = 1.5×10∧3 J; the internal energy of the gas
Isobaric process is a type of process in which the pressure of the system stays constant.
More about an isobaric process: brainly.com/question/28106078
#SPJ4
Answer:
Mass = 36 g
Explanation:
Given data:
Mass of water formed = ?
Mass of hydrogen = 4.04 g
Mass of oxygen = 31.98 g
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 4.04 g/ 2 g/mol
Number of moles = 2.02 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 31.98 g/ 32 g/mol
Number of moles = 1.0 mol
Now we will compare the moles of water with hydrogen and oxygen.
O₂ : H₂O
1 : 2
H₂ : H₂O
2 : 2
2.02 : 2.02
Number of moles of water formed by oxygen are less thus oxygen will limiting reactant.
Mass of water:
Mass = number of moles × molar mass
Mass = 2 mol × 18 g/mol
Mass = 36 g