The correct answer is slow
This statement is true, potato plants with jellyfish genes do in fact glow when they need to be watered!
May i have brainliest? I need 1 more!
Answer:
The concentration of the copper (II) sulfate solution is 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Explanation:
The concentration of a solution is the amount of solute dissolved in a given volume of solution. In this case, the concentration of the copper(II) sulfate solution in micromoles per liter (symbol ) is the number of micromoles of copper(II) sulfate dissolved in each liter of solution. To calculate the micromoles of copper(II) sulfate dissolved in each liter of solution you must divide the total micromoles of solute by the number of liters of solution.
Here's that idea written as a formula: c= n/V
where c stands for concentration, n stands for the total micromoles of copper (II) sulfate and V stands for the total volume of the solution.
You're not given the volume of the solution in liters, but rather in milliliters. You can convert milliliters to liters with a unit ratio: V= 150. mL * 10^-3 L/ 1 mL = 0.150 L
Next, plug in μmol and liters into the formula to divide the total micromoles of solute by the number of liters of solution: c= 31 μmol/0.150 L = 206.66 μmol/L
Convert this number into scientific notation: 2.06 * 10^2 μmol/L or 2.06 * 10^2 μM
Adding (S2O3)2- would affect the reaction mechanism that involves this ion. From the reaction mechanism given above, the equilibrium of step 2 would be affected. Adding the stock solution of (S2O3)2- would shift the equilibrium to the right thus making more products of the said mechanism. Also, the reaction rate of this step would occur faster than the original rate. This is based on Le Chatelier's Prinicple which states that a corresponding change would happen to the equilibrium of a reaction when pressure, concentration of the substances or temperature is changed. So, that after the addition, a color change would appear immediately because I3- would be removed slowly from solution, and would therefore be able to react with starch.