A power source, such as a battery.
Answer:

Explanation:
Hello,
In this case, the reaction is given as:

Thus, starting by the yielded grams of silver iodide, we obtain:

Which correspond to the iodide grams in the silver iodide. In such a way, by means of the law of the conservation of mass, it is known that the grams of each atom MUST remain constant before and after the chemical reaction whereas the moles do not, therefore, the mass of iodine from the silver iodide will equal the mass of iodine present in the soluble iodide, thereby:

And the rest, correspond to the iodide's metallic cation which is unknown. Such value has sense since it is lower than the initial mass of the soluble iodide which is 1.454g, so 0.272 grams correspond to the unknown cation.
Best regards.
Answer:
Option 2 is correct.
Scintillation counters and Geiger Counters provide instantaneous measure of radioactivity.
Explanation:
Of the three means of measuring radioactivity presented. Only Film-badge dosimeter lacks a sensitive photo-detector piece that instantaneously converts the amount of radiation seen into electrical waves. It collects the radiation over time and the film is then developed after a particular point in time for the radioactivity collected to be measured.
Although used majorly for gamma rays and neutrons, the scintillation counters uses a scintillator to convert ionizing radiation (like the two mentioned at the start of this passage), into photons that the photo-detector (usually very sensitive) converts into electrical signals for immediate reading. It gives the energy and intensity of the radiation intended to.be measured.
The Geiger Muller counter, the most used measure of radioactivity across all fields, uses the tube (which contains inert gases) as the sensitive radiation detecting piece. High voltage maintained in the tube makes the gases conductive and it transmits the intemsity of radiation to the processing part of the counter which converts this reading to electrical signals, immediately for reading. Unlike the scintillation counters, it doesn't measure the energy of the radiation.
Hope this Helps!!!
C. Chemical change because it doesn’t change it chemical makeup but it will change temps it’s physical appearance and phase change or change of state
Answer:
The heat of the solution of salt is 1.66.11 J/g.
Explanation:
Mass of the water = m = 46.52 g
Initial temperature of the water = 
Final temperature of the water = 
The specific heat of water, c = 4.180 J/gºC
Heat associated with water on dissolving salt: q



Negative sign means that heat was lost by water on an addition of a salt.
Heat released on dissolving of salt = -Q = 748.65 J
Mass of salt added = 4.5069 g
Heat of the solution of salt :
= 
The heat of the solution of salt is 1.66.11 J/g.