Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
Answer:
11
Explanation:
According to Boyle's law:

Thus,

Where, n is the number of the balloons
From the question, it is given that:
For balloon:
P =
Pa
V = 0.040 m³
For cylinder:
P =
Pa
V = 0.0031 m³
So,

n = 11.625
<u>So, Maximum number of balloons = 11</u>
Quantum entanglement<span> is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the </span>quantum<span> state of each particle cannot be described independently — instead, a </span>quantum<span> state must be described for the system as a whole.</span>
Answer:
he can subtract the distance and then divide by the time it takes him
Explanation: