The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!