Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
Answer:
The direction of the B-field is in the +y-direction.
Explanation:
The corresponding formula is

This means, we should use right-hand rule.
Our index finger is pointed towards +x-direction (direction of velocity),
our middle finger should point towards the direction of the B-field,
and our thumb should point towards the +z-direction (direction of the force).
Since our middle finger in this situation points towards +y-direction, the B-field should be in +y-direction.

Answer:
Energy stored in the capacitor is
Explanation:
It is given that,
Charge, 
Potential difference, V = 36 V
We need to find the potential energy is stored in the capacitor. The stored potential energy is given by :

U = 0.000027 J

So, the potential energy is stored in the capacitor is
. Hence, this is the required solution.
Using the pressure law (P1 x V1)/ T1 = (P2 x V2)/ T2 where P1= the initial pressure V1= initial volume T1= initial temperature and P2= the final pressure V2= the final volume T2 = the final temperature and temperature is always in kelvin
Answer:
a) 35.44 mm
b) 17.67 mm
Explanation:
u = Object distance = 3.6 m
v = Image distance
f = Focal length = 35 mm
= Object height = 1.8 m
a) Lens Equation

The CCD sensor is 35.34 mm from the lens
b) Magnification


The person appears 17.67 mm tall on the sensor