Answer:
3 moles
Explanation:
SrCO3
Mass = 442.8g
Molar mass = (87.6 + 12 * [16*3]) = 147.6g/mol
Number of moles = mass / molar mass
Number of moles = 442.8 / 147.6
Number of moles = 3
Answer:
n(HCl)=1.96 mol
Explanation:
CH4+4Cl2⟶CCl4+4HCl
CCl4+2HF⟶CCl2F2+2HCl
With ideal yields we will end up with 4 moles of HCl.
With 70% yields on every stage
n(HCl)=0.7*0.7*4=1.96 mol
Answer:
a) pH = 4.213
b) % dis = 2 %
Explanation:
Ch3COONa → CH3COO- + Na+
CH3COOH ↔ CH3COO- + H3O+
∴ Ka = 1.8 E-5 = ([ CH3COO- ] * [ H3O+ ]) / [ CH3COOH ]
mass balance:
⇒ <em>C</em> CH3COOH + <em>C</em> CH3COONa = [ CH3COOH ] + [ CH3COO- ]
<em>∴ C </em>CH3COOH = 3.40 mM = 3.4 mmol/mL * ( mol/1000mmol)*(1000mL/L)
∴ <em>C</em> CH3COONa = 1.00 M = 1.00 mol/L = 1.00 mmol/mL
⇒ [ CH3COOH ] = 4.4 - [ CH3COO- ]
charge balance:
⇒ [ H3O+ ] + [ Na+ ] = [ CH3COO- ] + [ OH- ]....is negligible [ OH-], comes from water
⇒ [ CH3COO- ] = [ H3O+ ] + 1.00
⇒ Ka = (( [ H3O+ ] + 1 )* [ H3O+ ]) / ( 3.4 - [ H3O+])) = 1.8 E-5
⇒ [ H3O+ ]² + [ H3O+ ] = 6.12 E-5 - 1.8 E-5 [ H3O+ ]
⇒ [ H3O+ ]² + [ H3O+ ] - 6.12 E-5 = 0
⇒ [ H3O+ ] = 6.12 E-5 M
⇒ pH = - Log [ H3O+ ] = 4.213
b) (% dis)* mol acid = <em>C</em> CH3COOH = 3.4
∴ mol CH3COOH = 500*3.4 = 1700 mmol = 1.7 mol
⇒ % dis = 3.4 / 1.7 = 2 %
Answer:
Percentage mass of copper in the sample = 32%
Explanation:
Equation of the reaction producing Cu(NO₃) is given below:
Cu(s)+ 4HNO₃(aq) ---> Cu(NO₃)(aq) + 2NO₂(g) + 2H₂O(l)
From the equation of reaction, 1 mole of Cu(NO₃) is produced from 1 mole of copper. Therefore, 0.010 moles of Cu(NO₃) will be produced from 0.010 mole of copper.
Molar mass of copper = 64 g/mol
mass of copper = number of moles * molar mass
mass of copper = 0.01 mol * 64 g/mol = 0.64 g
Percentage by mass of copper in the 2.00 g sample = (0.64/2.00) * 100%
Percentage mass of copper in the sample = 32%