Answer:
Iron remains = 17.49 mg
Explanation:
Half life of iron -55 = 2.737 years (Source)
Where, k is rate constant
So,
The rate constant, k = 0.2533 year⁻¹
Time = 2.41 years
= 32.2 mg
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>Iron remains = 17.49 mg</u>
Answer:
THE LENGTH OF THE AIR COLUMN IS 9.5 CM
Explanation:
Taking the atmospheric pressure to be 760 mmHg;
When the capillary tube is held horizontally, the pressure of the tube is 760 mmHg
when the capillary tube is held vertically, the pressure increases by 4 cm = 40 mm
The new pressure of the tube is hence, 760 + 40 mmHg = 800 mmHg
Using the pressure forlmula;
P1 V1 = P2 V2
P1 A1 L1 = P2 A2 L2
where A1 and A2 is the area of the capillary tube and it is equal, it cancels out.
P1 l1 = P2 l2
l2 = P1 l1 / P2
l2 = 760 * 10 / 800
l2 = 9.5 cm
The length of the air in the tube is 9.5 cm.
Answer:
4 moles of carbon
6 moles of water
Explanation:
I think as there no data given u have to is the numbers infront of the equation e.g 4CO2 so 4.
hope this helps :)
Answer:
The five assumption of Kinetic molecular theory are given below.
Explanation:
Kinetic molecular theory of gasses stated that,
1) Gases consist of large number of smaller particles which are distance apart from each others.
2) The gas molecules collide with each other and also with wall of container and this collision is elastic.
3) Gas molecules are in continuous random motion and posses kinetic energy.
4) The forces of attraction between gas molecules are very small and considered negligible.
5) The temperature of gas is directly proportional to average kinetic energy of gas molecules.
Answer:
When hydrogen gas combines with nitrogen to form Ammonia the following chemical reaction will take place. Our equilibrium reaction will be N2(g) + 3H2(g) ⇔ 2NH3(g) + Heat. In this case, Hydrogen and nitrogen react together to form ammonia.
Explanation: