Answer:

Explanation:
Hello,
In this case, for this heat transfer process in which the heat lost by the hot platinum is gained by the cold deuterium oxide based on the equation:

We can represent the heats in terms of mass, heat capacities and temperatures:

Thus, we solve for the mass of platinum:

Next, by using the density of platinum we compute the volume:

Which computed in terms of the edge length is:

Therefore, the edge length turns out:
![a=\sqrt[3]{180cm^3}\\ \\a=5.65cm](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7B180cm%5E3%7D%5C%5C%20%5C%5Ca%3D5.65cm)
Best regards.
Answer:
2 KL + Pb(NO3)2 = 2 KNO3 + PbL2
Explanation:
KL + Pb(NO3)2 = KNO3 + PbL2 is unballanced equation, just balance from there :)
Mass=density·volume. The density is 2.70g/mL and the volume is 353mL. So you would multiply 2.70g/mL by 353mL which will give you 953.1g. Hope that helps :)
The valence electron determines whether an ionic or covalent bond develops between two atoms.
An atom's outer shell electrons, known as valence electrons, can take a role in the creation of chemical bonds. When two atoms establish a single covalent bond, normally, both atoms contribute one valence electron to create a shared pair.
Ionic bonds, also known as electrovalent bonds, are a type of linkage created in a chemical molecule by the electrostatic attraction of ions with opposing charges. When one atom's valence (outermost) electrons are permanently transferred to another atom, a bond of this kind is created. The one or two and three are lost and gained in ionic bond formation, but particles with four valence electrons are neither lost nor gained. The four electrons are generally shared to form a covalent bond.
Hence, the valence electron decides the type of the bond.
To know more about Electrostatic attraction.
brainly.com/question/14889552
#SPJ4