I think the correct answer is B I am so sorry if it’s incorrect
Answer:
34 g
Explanation:
Let's consider the following balanced equation.
N₂ + 3 H₂ → 2 NH₃
The theoretical mass ratio of N₂ to H₂ is 28g N₂ : 6g H₂ = 4.6g N₂ : 1g H₂.
The experimental mass ratio of N₂ to H₂ is 100g N₂ : 6g H₂ = 16.6g N₂ : 1g H₂.
As we can see, hydrogen is the limiting reactant.
According to the task, we 6 g of H₂ react completely, 34 g of ammonia are produced.
Answer:
Molarity of the solution = 3.000 M
Volume of the solution = 250.0 mL = 0.25 L
moles in 250.0 mL = molarity x volume of the solution
= 3.000 M x 0.25 L
= 0.75 mol
Hence, 0.75 mol of NaCl is needed to prepare 250.0 mL of 3.000 M NaCl solution.
Moles (mol) = mass (g) / molar mass (g/mol)
Moles of NaCl in 250.0 mL = 0.75 mol
Molar mass of NaCl = 58.44 g/mol
Mass of NaCl in 250.0 mL = Moles x Molar mass
= 0.75 mol x 58.44 g/mol
= 43.83 g
Hence, 43.83 g of NaCl is needed to prepare 250.0 mL of 3.000 M solution.
Explanation:
They are different substances because in the weight and size, they are different.
in weight gas weighs nothing but every solid is different.
same with liquids.
Answer:
Chlorine has 17 total electrons with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^5.
What are the first two quantum numbers for the six electrons in the 2p subshell?
Explanation:
The principal quantum number represents the shell number in which the electron is present.
It is represented with "n".
The next quantum number is the azimuthal quantum number.
It represents the shape of the orbital.
It has values from 0 to (n-1).
Its value depends on the principal quantum number.
Chlorine has 17 total electrons with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^5.
For the six elecetrons in 2p subshell:
The first two quantum number values are the same and their values are:
n=2 , l=1.