Kc = concentrations of product / concentrations of reactant
Kc = [Br₂] [Cl₂]₃ / [BrCl₃]₂
What is the equilibrium constant?
The relationship between a reaction's products and reactants with regard to a certain unit is expressed by the equilibrium constant(K) This article introduces the mathematics needed to determine the partial pressure equilibrium constant as well as how to formulate expressions for equilibrium constants. By allowing a single reaction to reach equilibrium and then measuring the concentrations of each chemical participating in that reaction, one can determine the numerical value of an equilibrium constant. it is the ratio of product concentrations to reactant concentrations. The equilibrium constant for a given reaction is unaffected by the initial concentrations because the concentrations are measured at equilibrium.
To learn more about the equilibrium constant, visit:
brainly.com/question/19340344
#SPJ4
Answer: -
When bismuth-212 undergoes alpha decay, it becomes ²⁰⁸Tl
Explanation: -
Mass number of ²¹²Bi = 212
Atomic number of ²¹²Bi = 83
When alpha decay occurs the mass number decreases by 4 and the atomic number decreases by 2.
Mass number of daughter = 212 - 4 = 208
Atomic number of daughter = 83 - 2 = 81
It is the atomic number of Thallium Tl.
Thus the daughter nucleide is ²⁰⁸Tl.
Answer:
0.19 g
Explanation:
Step 1: Given data
Volume of hydrogen at standard temperature and pressure (STP): 2.1 L
Step 2: Calculate the moles corresponding to 2.1 L of hydrogen at STP
At STP (273.15 K and 1 atm), 1 mole of hydrogen has a volume of 22.4 L if we treat it as an ideal gas.
2.1 L × 1 mol/22.4 L = 0.094 mol
Step 3: Calculate the mass corresponding to 0.094 moles of hydrogen
The molar mass of hydrogen is 2.02 g/mol.
0.094 mol × 2.02 g/mol = 0.19 g
Answer:
3.01 × 10²³ atoms Ne
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
[Given] 10.1 g Ne
[Solve] atoms Ne
<u>Step 2: Identify Conversions</u>
Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
[PT] Molar Mass of Ne: 20.18 g/mol\
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.01398 × 10²³ atoms Ne ≈ 3.01 × 10²³ atoms Ne
Helium has the smallest atomic radius® Α⇒Ω