Answer:
The answer is "The First choice".
Explanation:
The whole question can be found in the file attached.
The water vapor inside the air freezes thru the entrance of its nitrogen. This is because liquid nitrogen has a very low temperature and seems to be sufficiently cold to condensed and freeze the steam of water. At air pressure, it has a boiling temperature of -196°C. Freezing the skin producing freeze or cold burns can be associated with direct contact.
Answer:
C.) No. of electrons
Explanation:
A.) is incorrect. The atomic number represents the number of protons in an element. Nitrogen (N) and sodium (Na) always have a differing amount of protons.
B.) is incorrect. The mass number represents the number of protons and neutrons in an element. The number of neutrons and protons are specific to each element (disregarding isotopes). When elements ionize, these amounts are not altered.
C.) is correct. When an element becomes an ion, the number of electrons change. When nitrogen gains 3 electrons and sodium loses 1 electron, they end up having the same number of electrons (10).
D.) is incorrect. When elements ionize, the number of neutrons does not change. The only way two different elements could have the same number of neutrons is if at least one of the elements is an isotope. Isotopes are two or more atoms of the same element that differ in their amounts of neutrons.
Answer:
Because only a few bacterias can "fix" the atmosphere nitrogen.
Explanation:
The nitrogen at the atmosphere is in the form of N₂ and represents 78% of the atmosphere composition. The element is part of the constitution of nucleic acids and proteins, so the living beings needed them.
However, the animals and the plants can't catch the N₂. Some bacterias that live in mutualism with plants have this ability, and they "fix" the atmosphere nitrogen, transforming the N₂ in the ions nitrite (NO₃⁻) or ammonia (NH₃), which can be caught by the plants.
Them, when the primary consumers eat the plants they catch the nitrogen, which will be passed through the food chain.
So, it's difficult to pull nitrogen from the atmosphere into the nitrogen cycle of the biosphere because only a few bacterias can do it.