Answer:
ΔS° = - 47.2 J/mol.K
Explanation:
ΔS°= 4(S°mH3PO4) - 6(S°mH2O) - S°mP4O10
∴ S°mH2O(l) = 69.9 J/mol.K
∴ S°mP4O10 = 231 J/mol.K
∴ S°mH3PO4 = 150.8 J/mol.K
⇒ ΔS° = 4*(150.8) - 6*(69.9) - 231
⇒ ΔS° = - 47.2 J/mol.K
We can use the ideal gas law equation to find the volume of the gas.
PV = nRT
P - pressure - 400 kPa
V - volume
n - number of moles - 4.00 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 300.0 K
substituting these values in the equation
400 000 Pa x V = 4.00 mol x 8.314 Jmol⁻¹K⁻¹ x 300.0 K
V = 24.9 dm³
Volume is 24.9 dm³
Answer: An existing theory is modified so that it can explain both the old and new observations.
Explanation:
Answer:
How the relative density of a substance is related to the density calculate the density of iron if its relative density is 2 and a density of water is 2gcm -3
R.d= relative density of substance/ relative density of water
R.d= 2/2
R.d= 1gcm-3
Explanation:
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ