Answer:
it loses engry it follows difernt paths
Explanation:
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

D) A gallon of gasoline definitely. Gas is like, if not a chemical. It will have the most.
~Silver
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Answer:
Calculate the wavelength associated with an electron with energy 2000 eV.
Sol: E = 2000 eV = 2000 × 1.6 × 10–19 J