Answer:
A
Explanation:
The magnet can always attract other things.
Answer:
1.23×10⁸ m
Explanation:
Acceleration due to gravity is:
a = GM / r²
where G is the universal gravitational constant,
M is the mass of the planet,
and r is the distance from the center of the planet to the object.
When the object is on the surface of the Earth, a = g and r = R.
g = GM / R²
When the object is at height i above the surface, a = 1/410 g and r = i + R.
1/410 g = GM / (i + R)²
Divide the first equation by the second:
g / (1/410 g) = (GM / R²) / (GM / (i + R)²)
410 = (i + R)² / R²
410 R² = (i + R)²
410 R² = i² + 2iR + R²
0 = i² + 2iR − 409R²
Solve with quadratic formula:
i = [ -2R ± √((2R)² − 4(1)(-409R²)) ] / 2(1)
i = [ -2R ± √(1640R²) ] / 2
i = (-2R ± 2R√410) / 2
i = -R ± R√410
i = (-1 ± √410) R
Since i > 0:
i = (-1 + √410) R
R = 6.37×10⁶ m:
i ≈ 1.23×10⁸ m
I believe the answer is A.
Since the Earth is in the Milky Way and not outside it, we cannot see the exact shape of it. Physicists have been able to track and graph the movements of the planets accurately for thousands of years, but that does not mean we know the shape of the entire solar system.<span />
Visceral epithelial cells
Answer:
10kg
Explanation:
Let PE=potential energy
PE=196J
g(gravitational force)=9.8m/s^2
h(change in height)=2m
m=?
PE=m*g*(change in h)
196=m*9.8*2
m=10kg