Answer:
sin=cos
tan=sin/cos
cos=sin
Explanation:
I've just answer what ive known
I hope its hepls to you
The student that measured the mass to be 16110g got closest to the known result. She is off by 10 g.
Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon:
From laws of motion:

Where S is the distance/displacement (as you would call it) which is unknown
v = final velocity which is 0m/s (this is because the car stops)
u = initial velocity which is 36m/s (from the data given)
t = time taken for the distance to be covered and it is 6s
Substitute the values, hence:


But this is merely the distance he travelled in the 6 seconds he was trying to stop the car.
Therefore, the distance between the car and the cows = 160-108
Distance = 52m