Voltage (V)= Current (I) * Resistance (R)
I=V/R=140/2=70A
Hope this helps!
F=ma
Force is 50N. Acceleration is 25 m/s^2.
50N=m*25 m/s^2
Divide both sides by 25.
mass=2 kg
Answer:
Answer is C
Explanation:
Let's say the pendulum starts swinging from its max height from the left. It then will go down and reach the equilibrium position, this will make it lose GPE while gaining KE (the loss in GPE = gain in KE). At the equilibrium position it has the max KE (max velocity) and minimum GPE. After passing the equilibrium it then starts to head up to the max height on the right, the pendulum gains GPE while losing KE and at the top will have minimum KE while having max GPE. Meaning throughout its joruney the total energy remains constant as
Total energy = KE + GPE
I have attached a simple diagram below, the y axis is the energy and x axis being the time (where t = 0 is the pendulum starting from max height left of the equilibrium). The green curve the the GPE and blue curve is KE. Red line shows that at all times the energy is constant.
Answer:
V = P = 0 m/s
Explanation:
When a pendulum bob is given an initial displacement or the initial velocity, it starts to execute periodic motion or simple harmonic motion. During this motion the kinetic and potential energy keeps interconverting. The kinetic energy becomes maximum at the lowest point, that is the mean point. Hence, the velocity is maximum at this point, as well. Similarly, at both extreme positions the potential energy becomes maximum due to maximum height, while the kinetic energy becomes zero at the highest point, that is extreme positions. At these, positions the velocity will be minimum and it will be zero due to zero kinetic energy. Hence, at both extreme positions the bob stops momentarily before, reversing the direction. Hence,
<u>V = P = 0 m/s</u>