Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
Answer:
<em>500Joules</em>
Explanation:
Kinetic energy = 1/2mv²
m is the mass of the wood
v is the velocity
Given
Mass = 10kg
Velocity v = 10m/s
Substitute into the formula and get KE
KE = 1/2 * 10 * 10²
KE = 1/2 * 1000
KE = 500Joules
<em>Hence the kinetic energy of the wood during delivery is 500Joules</em>
Answer:
Using g = 9.8: 1.02 kg, Using g = 10: 1 kg
Explanation:
E = mgh
20 = m(9.8)(3 - 1)
20 = 9.8m(2)
20 = 19.6m
m = 1.02 kg
I'm now assuming you may be using a g constant of 10, thus the close integer result, in which case the mass would be exactly 1 kilogram.
Answer:
because it is an ice that is why it melt
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.