Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
Compare the initial mass to the final mass.
To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.
By definition Newton's second law is described as
F= ma
Where,
m= mass
a = Acceleration
Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,


In the case of mass A,


Making summation of Torques in the Pulley we have to



Replacing the values previously found,





Replacing with our values


PART B) Ignoring the moment of inertia the acceleration would be given by



Therefore the error would be,



I believe that your acceleration would be 4 m/s
I think the main idea is that the middle planets have a solid inner core and that they all could have life on them