Answer:
547 m
Explanation:
From law of motion
s = ut + ½at²
Where "t" is Time taken to reach Earth
s= distance= 182 m
a= vertical acceleration = 5.82 m / s 2
U= initial velocity in vertical position = 0
182= ½ × 5.82t²
t²=( 2× 182)/ 5.82
= 364/5.82
= 62.54
t= √62.54
t= 7.908s
horizontal distance travelled = speed x time
Horizontal speed= 72.6 m / s
horizontal distance travelled =72.6× 7.908
= 547 m
Hence, the survivor will it hit the waves at 547 m away
Answer:
<em> The elastic potential energy stored in the bungee cord = 20 J</em>
Explanation:
potential energy: This is the energy possessed by a body due to its position. The S.I unit of energy is Joules. The mathematical expression for elastic potential energy is given below
E = 1/2ke²................ Equation 1
Where E = elastic potential energy of the spring, k = force constant of the spring, e = extension
<em>Given: K = 10 N/m, e = 2.00 m</em>
<em>Substituting these values into Equation 1</em>
<em>E = 1/2(10)(2)²</em>
<em>E = 5×4</em>
<em>E = 20 Joules.</em>
<em>Therefore the elastic potential energy stored in the bungee cord = 20 J</em>
<em></em>
Answer:
x(t) = -3sin2t
Explanation:
Given that
Spring force of, W = 720 N
Extension of the spring, s = 4 m
Attached mass to the spring, m = 45 kg
Velocity of, v = 6 m/s
The proper calculation is attached via the image below.
Final solution is x(t) = -3.sin2t