1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
2 years ago
13

A diffraction grating, ruled with 300 lines per mm, is illuminated with a white light source at normal incidence.

Physics
1 answer:
Vera_Pavlovna [14]2 years ago
6 0

the expression for diffraction grating allows to find the results for the questions for the angular separation are:

i) The third order is Δθ = 0.203 rad.

ii) The first order with water is Δθ = 0.046 rad.

The diffraction grating is a system formed by a large number of equally spaced lines whose diffraction is given by the expression.

          d sin θ = m λ

Where d is the distance between two lines, θ is the angle of diffraction, the order of diffraction and λ is the wavelength.

i) Let's start by looking for the separation between two lines

Let's use a rule of direct proportions. If there are 300 lines in 1 mm, what distance is there between two lines.

         d = 1 lines (1 mm / 300 lines) = 3,333 10⁻³ mm

         d = 3.333 10⁻⁶ m

Let's find the angle of diffraction for the third order (m = 3) for each wavelength.

λ₁ = 400 nm = 400 10⁻⁹ m

         sin θ₁ = \frac{m \ \lambda }{d}m λ/ d

         sin θ₁ = \frac{3 \ 400 \ 10^{-9} }{3.333 \ 10^{-6} }  

         θ₁ = sin⁻¹ 0.3600

         θ₁ = 0.368 rad

λ₂ = 600 nm = 600 10⁻⁹ m

         sin θ₂ = \frac{3 \ 600 \ 10^{-9} }{3.333 \ 10^{-6} }  

         θ₂ = sin⁻¹ 0.5401

         θ₂ = 0.571 rad

The angular separation is

         Δθ = θ₂ - θ₁

         Δθ = 0.571 - 0.368

         Δθ = 0.203 rad

ii) In this case, the separation between the network and the observation screen is filled with water.

When the rays leave the network they undergo a refraction process, for which they must comply with the relationship.

           n_i \ sin \theta_1 = n_r \ sin \theta_r

The incident side is in the air, therefore its refractive index is n_i = 1 and when it passes into the water with refractive index n_r = 1.33.

Let's start looking for the incident angles for the first order of diffraction.

      m = 1

λ₁ = 400 nm

         θ₁ = sin⁻¹  \frac{1 \ 400 \ 10^{-9}}{3.33 \ 10^{-6}}

         θ₁ = 0.120 rad

λ₂ = 600 nm

        θ₂ = sin⁻¹¹ \frac{1 \ 600 \ 10^{-9} }{3.33 \ 10^{-6}}

        θ₂ = 0.181 rad

we use the equation of refraction.

         \theta_r  = sin⁻¹ (\frac{n_i}{n_r} \ sin \ \theta_i )

λ₁ = 400 nm  

       θ₁ = sin¹ (\frac{1 sin 0.120}{1.33}

       θ₁ = 0.090 rad

λ₂ = 600 nm

        θ₂ =sin⁻¹  \frac{1 sin 0.181}{1.33}

        θ₂ = 0.1358 rad

The angular separation is

          Δθ = 0.1358 - 0.090

          Δθ = 0.046 rad.

In conclusion using the relation for the diffraction grating we can find the results for the questions about angular separation are:

       i) The third order is Δθ = 0.203 rad.

      ii) The first order with water is Δθ = 0.046 rad.

Learn more here: brainly.com/question/473160

You might be interested in
An astronaut 100m from the spaceship observes a 200kg meteoroid that drifts toward the shop at 10m/sec. If the astronaut can gai
Fynjy0 [20]

No

Refer to the attachment for calculations

8 0
3 years ago
Please Help!
e-lub [12.9K]

Answer:

Q9. Man who received the most altercations for a theory which later on became a revolutionary theory influenced in many areas of modern science and technology.

Q10. Fire truck is coming towards you

Explanation:

Q9. Christian  Doppler was born on 29th of November 1803 in Saltzburg. After studies in Linz and Vienna, he graduated in Mathematics. For many years, Doppler struggled to find work in academia, and for a time he worked as a bookkeeper at a factory. His academic career took him from Austria to Prague, where he became assistant at the University and later worked as professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and in 1850 as first director of the new Institute of Physics. While working at Vienna, his health broke down and moved Venice where he sought his eternal rest on March 17th, 1953.

During his lifetime, the man was quite controversial: a personality praised by some, but detested by others; and even as a scientist, he had a difficult time. He did publish papers on magnetism, electricity, optics and astronomy but, the discovery that allowed him to remain in history of science was the one he presented at Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens" in 1842. He hypothesized that the pitch of the sound would change if the source was moving.

Doppler's ideas were initially received with a certain amount of skepticism so, in order to support his claims, he devised an experiment in 1845 with the help of colleague. He used two sets of trumpeters, one set stationary at a train station and  one set moving on an open train car. Both sets of musicians had perfect pitch and held the same note. As the train passed the station, it was obvious that the frequency of the two notes didn't match, even though the musicians were playing same note. This proved his hypothesis.

Demonstrating that the Doppler effect also held true for frequency of ligh proved more difficult and was never successfully achieved before Doppler's demise. The first experiment that revealed a Doppler shift in starlight was carried out at the beginning of twentieth century. Since then Doppler effect was proved invaluable for astronomical observations.

For the most of the academic world, he is known as physicist; but one can equally find him on the list of mathematicians and astronomers too. This is proof for the exceptional broad spectrum of application of his main discovery.

Q10. When there is increase in frequency of the sound from source, then the source is moving towards you. Hence the fire truck is coming towards you

3 0
3 years ago
An electric bulb is rated 220 V and 100 W. When it is operated on 110 V, the
andrew-mc [135]

Answer:

50 W

Explanation:

Case 1

Power = V * I

100 = 220 * I

I = \frac{100}{220} A

Case 2

P = V * I

P = 110 * \frac{100}{220}

P = 50 W

I think the answer is 50 W

Hope it helps

8 0
3 years ago
a passenger elevator operates at an average of 8 m/s if the 60th floor is 219 m above the first floor how long does it take the
MAVERICK [17]

Answer:

The universal sign for choking is __________.

A.

two balled fists pressing the abdomen

B.

pointing at an open mouth

C.

two hands grasping the neck

D.

pretending to cough

Explanation:

4 0
3 years ago
While a balloon is being filled, if the temperature of the air in the balloon decreases, what happens to its volume?
Ugo [173]
Why is it always balloons?
anyways so the balloon volume goes somewhere else when it shrinks because the balloon is losing air i think
4 0
3 years ago
Read 2 more answers
Other questions:
  • A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
    11·1 answer
  • Scientific question must be
    9·1 answer
  • An organization's _______ expresses the need the firm will fill, the operations of the business, its components and functions, a
    12·1 answer
  • Can someone help me with 5
    5·1 answer
  • What makes it possible for us to see the moon from earth?
    12·1 answer
  • Define si system of unit
    15·1 answer
  • What is an indicator?
    5·1 answer
  • A steady-state temperature difference of 85 K is impressed across a fiberglass layer of 13 cm thickness. The thermal conductivit
    7·1 answer
  • Two measurments that are the same as each other are called_____?<br><br><br> What are they called???
    8·1 answer
  •  what is the difference between repelling and attracting
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!