Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
Answer:
C. Targets
Explanation:
Because the Ad for the theme park effectively caught Raquel's attention, a businessperson would say that the ad accurately targeted Raquel. Marketers use specific colors, themes, designs, songs, etc to target a specific audience.
First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>
Answer:
purchasing bonds in order to increase the money supply.
Explanation:
The Federal Reserve raises or lowers interest rates through its regularly scheduled Federal Open Market Committee. That's the monetary policy arm of the Federal Reserve Banking System.
The Fed can attempt to increase the federal funds rate by selling Treasury bills, which decreases bank reserves.
Answer:
restoring force is 2 N
Explanation:
given data
angle pulled = 5°
force = 1 N
pulled = 10°
to find out
restoring force
solution
we know here force
force = m×g×sinθ ..........1
so here θ is very small so sinθ = θ
1 = mg(5)
mg = 1 /5 ..................2
and
now for 10 degree
we know here θ is small so sinθ = θ
so from equation 1
force = m×g×sinθ
put equation 2 here
force = 1/5 × 10
force = 2 N
so restoring force is 2 N