this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>
The truck would of went 150 miles
<span>Answer:
If you mean the Knight in the prologue, the man traveling with his son (the Squire) and a Yeoman, he is traveling to Canterbury to give thanks for his safe return from the wars in the Baltic. We're told that he has never been known to speak unkindly to anyone, a fact that sums up his chivalrous upbringing. Evidently he feels strongly motivated to live by a code of high standards and refined behavior.</span>
Answer:
<h2>Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.</h2>
<h3>Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other quantities. </h3>
Explanation:
#Let's Study
#I Hope It's Helps
#Keep On Learning
#Carry On Learning


Explanation:
Newton's 2nd Law can be expressed in terms of the object's momentum, in this case the expelled exhaust gases, as
(1)
Assuming that the velocity remains constant then

Solving for
we get

Before we plug in the given values, we need to convert them first to their appropriate units:
The thrust <em>F</em><em> </em> is

The exhaust rate dm/dt is


Therefore, the velocity at which the exhaust gases exit the engines is

