Answer:
A) If the paintball stops completely the magnitude of the change in the paintball’s momentum is 
B) If the paintball bounces off its target and afterward moves in the opposite direction with the same speed, the change in the paintball’s momentum is 
C) A paintball bouncing off your skin in the opposite direction with the same speed hurts more than a paintball exploding upon your skin because of the strength exerted is twice than if it explodes.
Explanation:
Hi
A) We use the formula of momentum
, so we have 
B) We use the same formula above, then due we have a change of direction at the same speed, therefore the change in the momentum is the double so
.
C) The average strength of the force an object exerts during impact is determined by the amount the object’s momentum changes. therefore
, as we don't have any data about the impact time but we know momentum is twice, time does no matter and strength is twice too.
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
Answer:
<h2>10 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 20 × 0.5
We have the final answer as
<h3>10 kg.m/s</h3>
Hope this helps you
Answer:
10 m/s^2
Explanation:
Equation: F = ma.
a = acceleration
m = mass
F = force
Because we are trying to find acceleration instead of force we want to rearrange the equation to solve for a which is F/m = a.
F = 20
m = 2
a = ?
a = F/m
a = 20/2
a = 10 m/s^2
Answer:
1317.4 m
Explanation:
We are given that
Angle=
Initial speed =
We have to find the horizontal distance covered by the shell after 5.03 s.
Horizontal component of initial speed=
Vertical component of initial speed=
Time=t=5.03 s
Horizontal distance =
Using the formula
Horizontal distance=
Horizontal distance=1317.4 m
Hence, the horizontal distance covered by the shell=1317.4 m