Classical physics considered light to behave as a wave in all environments; it had a set amplitude, frequency etc. The problem was that this meant that there was a continuous variation in its properties, hence if the amplitude of the light was incresed by a bit, a phenomenon like the phhotoelectric one would become only marginally more apparent. However, in this case, there is a cutoff point which means that the only-wave theory had to be wrong.
<span>15 m/s^2
The first thing to calculate is the difference between the final and initial velocities. So
180 m/s - 120 m/s = 60 m/s
So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving
60 m/s / 4.0 s = 15.0 m/s^2
Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2</span>
Impact theory is the idea that the moon was formed by a collision between the Earth and another body.
The capture theory is the idea that the moon formed somewhere else in the solar system. The theory proposed that the moon was just an asteroid pulled into orbit by the Earth.
Co-formation is a theory that proposes that the Earth and the moon formed around the same time as each other from a primitive solar nebulae.
The answer to your question then is CAPTURE THEORY.
By definition, the law of conservation of energy states that:
Ei = Ef
Where,
Ei: initial energy
Ef: final energy
Therefore, no matter the type of energy, always the final energy is equal to the final energy.
Energy can be transformed into another type of energy. For example, the potential energy can be transformed into kinetic energy.
Also, energy is not created, nor destroyed.
Answer:
The following is not true about the Law of Conservation of Energy:
A. It states that the total energy in the universe keeps increasing.
Answer:

Explanation:
<u>Net Force</u>
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The m=200 kg crate is pushed horizontally with a force Fa=700 N. The friction force opposes motion and a horizontal net force appears causing the acceleration.
The forces on the vertical direction are in balance since the crate does not accelerate in that direction, thus the weight and the normal force are equal:
N = W = mg
The friction force can be calculated by using the coefficient of friction μ:

Calculating the normal force:
N = 200 * 9.8 = 1,960 N
The friction force is:


The horizontal net force is:


Finally, the acceleration is computed:

