The half reactions as they occur at each electrode
is as follows
at the anode Sn(s) =sn^2+(aq) + 2e -
at the cathode 2 ag^+(aq) + 2e - = 2Ag (s)
net cell reaction = Sn (s) + 2Ag^+(aq) = sn^2+ (aq) + 2 Ag (s)
Metals have the ability to conduct electricity.
Metals are lustrous, malleable, ductile and are good conductor of heat and electricity.
They conduct electricity because the electrons in metal are delocalized electrons and are free moving electrons so when they gain energy (heat) they vibrate more quickly and can move around, this means that they can pass on the energy more quickly.
Answer:
P.E = 25.48 J
Explanation:
Given data:
Mass = 2 Kg
Height = 1.3 m
Potential energy = ?
Solution:
Formula:
P.E = m . g . h
P. E = potential energy
m = mass in kilogram
g = acceleration due to gravity
h = height
Now we will put the values in formula.
P.E = m . g . h
P.E = 2 Kg . 9.8 m /s² . 1.3 m
P.E = 25.48 Kg. m² / s²
Kg. m² / s² = J
P.E = 25.48 J
Answer:
In the lab, students were encouraged to look at different types of rocks and minerals. They were also told to observe the physical properties of the rocks and minerals. Based on these physical properties, the children were able to distinguish the different types of rocks and minerals. The major differences which the children will focus on will be the color, shape, hardness, luster, streak, fracture and cleavage of the rocks and minerals.
They try to base their conclusions off of data and measurements of which they should record from conducting experiments