Answer:
v₁ = 3.5 m/s
v₂ = 6.4 m/s
Explanation:
We have the following data:
m₁ = mass of trailing car = 400 kg
m₂ = mass of leading car = 400 kg
u₁ = initial speed of trailing car = 6.4 m/s
u₂ = initial speed of leading car = 3.5 m/s
v₁ = final speed of trailing car = ?
v₂ = final speed of leading car = ?
The final speed of the leading car is given by the following formula:
<u>v₂ = 6.4 m/s</u>
The final speed of the leading car is given by the following formula:
<u>v₁ = 3.5 m/s</u>
Rubber is a insulator so current cannot pass through it where as metal is a conductor which allows current to pass through it
Answer:
work = 1728
Power = 134
Explaination:
by using the formula,
Work(W)= Force(F)×Distance(D)
<h2>
and</h2>
Power(P)= Work(W)/Time taken(T)
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4