Explanation:
since both the teammates are of the same height, their height won't matter. Because now the basketball won't cover any vertical distance.
We have to calculate its range the horizontal distance covered by it when tossed from one teammate to the other.
range can be calculated by the formula :-

u is the velocity during its take off and
is the angle at which its thrown
Given that
- u = 8m/ s
= 40°
calculating range using the above formula


value of sin 80 = 0. 985



Hence,

Answer:
Option (e)
Explanation:
A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,
Energy density = 100 J/m
Let Q be the charge on the plates.
Energy density = 1/2 x ε0 x E^2
100 = 0.5 x 8.854 x 10^-12 x E^2
E = 4.75 x 10^6 V/m
V = E x d
V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V
C = ε0 A / d
C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F
Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C
Q = 190 nC
B) gravitational to kinetic
Explanation:
The skydiver, when he is located at a certain height h above the ground, possesses gravitational potential energy, equal to:

where m is the mass of the skydiver, g is the gravitational acceleration and h is the height above the ground. As he falls, its height h decreases, while his speed v increases, so part of the gravitational potential energy is converted into kinetic energy, which is given by

so, we see that as v increases, the kinetic energy increases. Therefore the correct answer is
B) gravitational to kinetic
Answer:
10 seconds
Explanation:
because the cat is moving one m/s slower than the dog, the dog has a relative speed of 1 m/s. 10 meters would take 10 seconds for the dog to cover
Answer:
option E
Explanation:
given,
I is moment of inertia about an axis tangent to its surface.
moment of inertia about the center of mass
.....(1)
now, moment of inertia about tangent

...........(2)
dividing equation (1)/(2)



the correct answer is option E