Answer:
a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.
b) The frequency is 1404.08 Hz
Explanation:
If the police car is a stationary source, the frequency is:
(eq. 1)
fs = frequency of police car = 1200 Hz
fa = frequency of moving car as listener
v = speed of sound of air
vc = speed of moving car
If the police car is a stationary observer, the frequency is:
(eq. 2)
Now,
fL = frequecy police car receives
fs = frequency police car as observer
a) The velocity of car is from eq. 2:

b) Substitute eq. 1 in eq. 2:

Answer:
Increasing until terminal velocity is reached
Explanation:
Provided the scream is a constant pitch at the source, Doppler effect will make the pitch increase as the velocity of the source towards the listener increases.
Answer:
The mass of the child + skateboard is 50 kg
Explanation:
In this problem, we can apply Newton's second law:
F = ma
where
F is the net force on a system
m is the mass of the system
a is the acceleration of the system
In this problem, our system is the child + the skateboard. The net force on them is
F = 75 N
and their acceleration is

So we can re-arrange the equation above to find their combined mass:

The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
D.None of these
Explanation:
The derivation of acceleration formula:
Let us call the 5kg mass
and the 4kg mass
. If the tension in the string is
then for the mass 
(1).
<em>(the negative sign on the right side indicates that acceleration is downwards)</em>
And for the mass 
(2).
<em> (the acceleration is upwards, hence the positive sign)</em>
Solving for
in the 2nd equation we get:
,
and putting this into the 1st equation we get:


Back to the question:
Using the formula for the acceleration we find


which is the acceleration that none of the given choices offer. Also, the acceleration of the two blocks is the same, because if it weren't, the difference in the instantaneous velocities of the objects would cause the string to break. Therefore, these two reasons make us decide that none of the choices are correct.