Answer:
5 ) The mass, 6) with lubrication and using surfaces that are not rough
Explanation:
5) If two bodies are held regardless of their densities and can be combined by some chemical or physical process, the only physical property to be modified will be the mass of the resulting body.
8)
Friction depends on the contact between two surfaces and when a body has a relative motion with respect to a contact surface. In order to reduce friction the contact surface must be lubricated, also the friction depends on the coefficient of friction between surfaces and the normal force exerted by the surface parallel to the area of contact with the body. Mathematically it can be expressed with the following equation.
![F_{f} = u*N\\where:\\u = friction coefficient\\N = normal force [Newtons]\\F_{f}= friction force [Newtons]](https://tex.z-dn.net/?f=F_%7Bf%7D%20%3D%20u%2AN%5C%5Cwhere%3A%5C%5Cu%20%3D%20friction%20coefficient%5C%5CN%20%3D%20normal%20force%20%5BNewtons%5D%5C%5CF_%7Bf%7D%3D%20friction%20force%20%5BNewtons%5D)
They will both hit the ground at the same time due to gravity.
that means they took the same time to travel the distance to the ground
however, the ball traveled farther
speed=distance (or displacement) divided by time
so the greater the distance, the greater the speed
the ball traveled faster in the same time so it traveled faster
answer is ball
Answer:
A
Explanation:
a statement that can be tested through the scientific method
Answer:
a) 
b)
degrees and on this case to the South of the East.
c)
d) 
So it would be 250 to the South
Explanation:
Part a
For this case the figure attached shows the illustration for the problem.
We know that
represent the velocity of the river to the south.
We have the velocity of the motorboard relative to the water and on this case is 
And we want to find the velocity of the motord board relative to the Earth 
And we can find this velocity from the Pythagorean Theorem.

Part b
We can find the direction with the following formula:
degrees and on this case to the South of the East.
Part c
For this case we can use the following definition

The distance would be D = w = 600 m and the velocity V = 4.8m/s and if we solve for t we got:

Part d
For this case we can use the same definition but now using the y compnent we have:

And replacing we got:

So it would be 250 to the South