What we know:
shape is rectangle which means the 2 long sides have equal distance and the 2 short sides have equal distance
we just need to find the distance of one long side and one short side for the perimeter which is the outline of the rectangle. Imagine the perimeter is the fence around the rectangle that you would probably have to paint every 3 years and the area would be where the grass would grow in the rectangle which you would probably have to cut every weekend.
perimeter=2l+2w
What we need to find: PERIMETER
Using pythagorean method a² +b²=h² to find length:
From point (-6,1) to point (3,8) is a rise of 9 and a run of 9 right to get from one point to another, those are my a and b in the pythagorean formula.
a² +b²=h²
(9)²+(9)²=h² substitution
81+81=h² simplified
162=h²
√162=√h2 used radical properties
√162=h length =√162
Using pythagorean method a² +b²=h² to find width:
From points (-6,-1) to point (-3,-4) is a down 3 units and left 3 units to reach from one point to another, these are my a and b for the pythagorean formula.
a² +b²=h²
(3)²+(3)²=h²
9+9=h²
18=h²
√18=√h²
√18=h this is the width=√18
Now we find perimeter:
p=2l+2w
p=2(√162)+2(√18)
p≈33.9
D. 33.9 units
The question is what numbers satisfy A ∩ C.
The symbol ∩ means intersection, .i.e. you need to find the numbers that belong to both sets A and C. Those numbers might belong to the set C or not, because that is not a restriction.
Then lets find the numbers that belong to both sets, A and C.
Set A: perfect squares from A to 100:
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
5^2 = 25
6^2 = 36
7^2 = 49
8^2 = 64
9^2 = 81
10^2 = 100
=> A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Set C: perfect fourths
1^4 = 1
2^4 = 16
3^4 = 81
C = {1, 16, 81?
As you see, all the perfect fourths are perfect squares, so the intersection of A and C is completed included in A. this is:
A ∩ C = C or A ∩ C = 1, 16, 81
On the other hand, the perfect cubes are:
1^3 = 1
2^3 = 8
3^3 = 27
4^3 = 81
B = {1, 8, 27, 81}
That means that the numbers 1 and 81 belong to the three sets, A, B, and C.
In the drawing you must place the number 16 inside the region that represents the intersection of A and C only, and the numbers 1 and 81 inside the intersection of the three sets A, B and C.
Answer:
863 cups
Step-by-step explanation:
step 1
Find the volume of the conical cup
The volume of the cone (cup) is equal to

we have
----> the radius is half the diameter

assume

substitute
step 2
Find out how many cups of water must Carissa scoop out of the sink
Divide the volume of the sink by the volume of the cup
so

Multiply $20 by 20% good luck