Answer:
<u>The temperature difference is</u> 
Explanation:
The formula that is to used is :
Δ
Δ
<em>where ,</em>
- <em>Δ
is the heat supplied in calories = 300cal</em> - <em>
is the mass of water taken = m (assumed)</em> - <em>Δ
is the change in temperature</em> - <em>
is the specific heat of water =
</em>
ΔT :

Molarity can be defined as the number of moles of solute in 1 L of solution.
M = n/V
Where M is the molarity of the solution (M or mol/L), n is the moles of the solute (mol) and V is the volume of the solution (L).
Here, solute is KF.
n = <span>0.250 mol
</span>V = 0.500 L
M = ?
By applying the formula,
M = 0.250 mol / 0.500 L
M = 0.500 mol/L
Hence, the molarity of KF solution is 0.500 mol/L.
<h2>Answer:</h2>
The correct answer is the option A which is: Cl2 + 2e- → 2Cl-
<h3>Explanation:</h3>
<em><u>Reduction is the gain of electrons and resulting in neutral or negative ions.</u></em>
<em><u>It is also the gain of hydrogen and release of oxygen ions.</u></em>
- According to first most definition, option A describes the reduction.
- Option B is incomplete reaction.
- While C and D are oxidation reactions.
<u>Answer:</u>
CHCl3 has dipole-dipole interactions.
<u>Explanation:</u>
Trichloromethane has a electric dipole moment permanently pointing along the line parallel with the Hydrogen carbon axis.Dipole-dipole interactions are said to be intermolecular force of attractions that is formed from two permanent dipoles interacting.
These type of interactions are occurring when one of the partially charged formed molecule are being attracted to an opposite partially charged molecule nearby . The molecules align in a state that the positive end of one of the molecule gets interacting with the negative end of the another molecule.