Answer:
1.549 m
Explanation:
Given:
The radius of the circular board, r = 2 m
The probability of hitting the red is given as 0.6
Now, this probability of hitting the red can be conclude as
0.6 = (Area of red)/ (Total area of the board)
Total area of the board = πr² = π × 2²
let the radius of the red area be R
thus, area of red circle, = πR²
on substituting the value of the area, we have
0.6 = (πR²)/ (π × 2²)
or
R² = 2.4
or
R = 1.549 m
Thus, the radius of the red circle is 1.549 m
Answer:
The equilibrium position will shift towards the left hand side or reactants side
Explanation:
Decreasing the volume (increasing the pressure) of the system will shift the equilibrium position towards the lefthand side or reactants side. This is because, decreasing the volume (increasing the pressure) implies shifting the equilibrium position towards the side having the least number of moles.
There are two moles of reactants and a total of three moles of products(total). Hence decreasing the volume and increasing the pressure of the gas phase reaction will shift the equilibrium position towards the lefthand side.
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
Answer:
The answer is based on the conservation of energy law; something you should really understand by now.
For convenience we can hold one of the two charges still; it becomes the frame of reference. And everything we say is in reference to the designated static charge, call it Q.
So the moving charge, call it q, has total energy TE = PE. It's all potential energy as we start with q not moving.
It has potential energy because in order to separate q from Q, we had to do work, add energy, on q. And from the COE law, that work added is converted into PE.
It's a bit like lifting something off the ground. That's work and it becomes GPE. So there's some work, in separating the two charges in the first place.
But there's more.
Now we let q go. As opposites attract, q is pulled to Q. And that force from Q is working on q, force over distance. Which means the potential energy q started with is being converted into kinetic energy. q is accelerating and picking up speed.
And there's more work, done by the EMF on charge q. That converts the PE into KE and the q charge smashes into Q with some kinetic energy.
Answer:
A 0m
Explanation:
The horse runs clockwise round the strack, then goes back to the start line ending up back at the same place when it started.