We use the following expression
T = 2*pi *sqrt(l/g)
Where T is the period of the pendulum
l is the length of the pendulum
and g the acceleration of gravity
We solve for l
l = [T/2*pi]² *g = [30s/2*pi]²* 9.8 [m/s²] = 223.413 m
The tower would need to be at least 223.413 m high
Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:

Answer:
U₂ = 400 KJ
Explanation:
Given that
Initial energy of the tank ,U₁= 800 KJ
Heat loses by fluid ,Q= - 500 KJ
Work done on the fluid ,W= - 100 KJ
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take final internal energy =U₂
We know that
Q= U₂ - U₁ + W
-500 = U₂ - 800 - 100
U₂ = -500 +900 KJ
U₂ = 400 KJ
Therefore the final internal energy = 400 KJ
A heat pump is a device that puts out heat. It involves pumping a lever over and over to get energy so it can work.
<span>{c o {a la manzana o
<span>Vapor de agua en el aire en una ducha de agua caliente</span>
</span>