Since static friction is the minimum force required to just start the motion of a stationary object.
Here if we need to start an object from rest then we required F = 700 N
So for the first part of the above problem Force will be F = 700 N
Now if the box is already moving then we will have to use kinetic friction force between box and floor
now we can write the equation of net force as

here



now we will have


That ratio is 2 .
<h3>What is ratio?</h3>
A ratio is the comparison of the two numbers bydivision.
Taking the first two outputs, or the -1/8 and -1/4, we can divide not the second one by the first one to find the
ratio:
-1/4-1/8
When dividing fractions, we multiply by the reciprocal:
-1/4x-8/1
To multiply fractions, multiply straight across:
(-1x-8)/(4x1) 8/4=2
To know more about ratio click-
brainly.com/question/25927869
#SPJ1
The height of the rail on top of the press box where the ball was dropped from is 11.025 m.
The given parameters:
- Time of motion of the ball, t = 1.5 s
- Let the height of the rail = h
<h3>Maximum height of fall;</h3>
- The maximum height through which the ball was dropped from is calculated by applying second equation of motion;

Thus, the height of the rail on top of the press box where the ball was dropped from is 11.025 m.
Learn more about height of projectiles here: brainly.com/question/10008919
Answer:
α = 
Explanation:
Applying the equations of motion to determine angular acceleration of the unit,
The sum of moments about O is equal to the product of angular acceleration and moment of inertia
∑Mo = Io*α
Taking the anticlockwise direction as positive moment,
= ( -(1150) + (1400) ) * (0.5 / 2) + ( (475) - (650) ) * (0.3 / 2) - F = Io*α
= 36.5 - (2.5 N.m) =
*α
NOTE: moment of inertia of the pulleys in this instance = 
Hence, 33.75 =
* α
Solving, α = 