Here's what you need to know about waves:
Wavelength = (speed) / (frequency)
Now ... The question gives you the speed and the frequency,
but they're stated in unusual ways, with complicated numbers.
Frequency: How many each second ?
The thing that's making the waves is vibrating 47 times in 26.9 seconds.
Frequency = (47) / (46.9 s) = 1.747... per second. (1.747... Hz)
Speed: How far a point on a wave travels in 1 second.
The crest of one wave travels 4.16 meters in 13.7 seconds.
Speed = (4.16 m / 13.7 sec) = 0.304... m/s
Wavelength = (speed) / (frequency)
Wavelength = (0.304 m/s) / (1.747 Hz) = 0.174 meter per second
Answer:
Total energy is constant
Explanation:
The laws of thermodynamics state that thermal energy (heat) is always transferred from a hot body (higher temperature) to a cold body (lower temperature).
This is because in a hot body, the molecules on average have more kinetic energy (they move faster), so by colliding with the molecules of the cold body, they transfer part of their energy to them. So, the temperature of the hot body decreases, while the temperature of the cold body increases.
This process ends when the two bodies reach the same temperature: we talk about thermal equilibrium.
In this problem therefore, this means that the thermal energy is transferred from the hot water to the cold water.
However, the law of conservation of energy states that the total energy of an isolated system is constant: therefore here, if we consider the hot water + cold water as an isolated system (no exchange of energy with the surroundings), this means that their total energy remains constant.
Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
Answer:
B
Explanation:
Atomic structure contains electrons, protons and neutrons.
Electron is very light compared to proton and neutrons.
Given that the mass of an electron is
A) equal to the mass of a proton
B) less than the mass of a neutron
C) greater than the mass of a proton
D) equal to the mass of a neutron
The correct answer is B which is less than the mass of the neurons.
Answer:
B) 12 m
Explanation:
Gravitational potential energy is:
PE = mgh
Given PE = 5997.6 J, and m = 51 kg:
5997.6 J = (51 kg) (9.8 m/s²) h
h = 12 m