Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K
Answer:
1. EXPOSE TWO GROUPS TO THE AROMA OF CHOCOLATE CHIP COOKIES BAKING
2.HAVE ONE GROUP EAT ONLY CHOCOLATE CHIPS COOKIES, AND HAVE THE OTHER GROUP EAT ONLY RADISHES
3.
Answer:
1.66 × 10⁻¹⁸ Moles
Explanation:
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Atoms and Avogadro's Number is given as,
Number of Moles = Number of Atoms ÷ 6.022 × 10²³ Atoms/mol
Putting values,
Number of Moles = 1.0 × 10⁶ Atoms ÷ 6.022 × 10²³ Atoms/mol
Number of Moles = 1.66 × 10⁻¹⁸ Moles
Answer:
Both are similar concepts.
Sound is the vibration of air particles (compression and expansion) the can reach your ears. But you can have vibration being propagated in liquids and solids as well.
Some sounds are generated in structures, so the vibration of a structure is converted to sound in air — for instance, a loudspeaker.
Explanation: