Whereas ionic bonds join metals to non-metals, metallic bonding joins a bulk of metal atoms. ... Sodium metal is therefore written as Na, not Na+. ... Both of these factors increase the strength of the bond still further. ... Heat capacity: This is explained by the ability of free electrons to move about the solid.
Answer:
A chemical change because a temperature change occurred, the solid disappeared and a gas was produces
Explanation:
Magnesium reacts with hydrochloric acid releasing energy, and leading to the formation of magnesium chloride and hydrogen gas. This is represented by the equation below:
Mg₍s₎ + 2HCl₍aq)⇒ MgCl₂₍aq₎ + H₂₍g₎
Answer:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Explanation:
H₂²⁺(aq) + O₂²⁻(aq) + Mg²⁺(aq) + SO₃²⁻(aq) → Mg²⁺(aq) + SO²⁻₄(aq) + H₂O(l)
A careful observation of the equation above, shows that the equation is already balanced.
To obtain the net ionic equation, we simply cancel Mg²⁺ from both side of the equation as shown below:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Answer:
27.4 gram is the solution it's simple dude...
Explanation:
don't be afraid of huge question they confuse you you need not to be confused
now see simple solution
molality is denoted by m
so
m= moles of solute / mass of solvent in kg.
i hope your know the meaning of solute and solvent....
so moles are given 0.467
and molar mass is given 58.44
so just take out the gram means
by applying formula
58.44×0.467
it will give 27.4 grams simple.....
Answer:
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
Explanation:
Let's consider the reaction between aqueous lead (II) nitrite and aqueous lithium chloride to form solid lead (II) chloride and aqueous lithium nitrite.
Pb(NO₂)₂(aq) + LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
This is a double displacement reaction. We will start balancing Cl by multiplying LiCl by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + LiNO₂(aq)
Now, we have to balance Li by multiplying LiNO₂ by 2.
Pb(NO₂)₂(aq) + 2 LiCl(aq) ⇒ PbCl₂(s) + 2 LiNO₂(aq)
The equation is now balanced.