Answer: Option (2) is the correct answer.
Explanation:
Atomic number of oxygen atom is 8 and its electronic distribution is 2, 6. So, it contains only 2 orbitals which are closer to the nucleus of the atom.
As a result, the valence electrons are pulled closer by the nucleus of oxygen atom due to which there occurs a decrease in atomic size of the atom.
Whereas atomic number of sulfur is 16 and its electronic distribution is 2, 8, 6. As there are more number of orbitals present in a sulfur atom so, the valence electrons are away from the nucleus of the atom.
Hence, there is less force of attraction between nucleus of sulfur atom and its valence electrons due to which size of sulfur atom is larger than the size of oxygen atom.
Thus, we can conclude that the oxygen atom is smaller than the sulfur atom because the outer orbitals of oxygen are located closer to the nucleus than those of sulfur.
Answer:
The energy of a body or a system with respect to the motion of the body or of the particles in the system. Potential energy is the stored energy in an object or system because of its position or configuration. Kinetic energy of an object is relative to other moving and stationary objects in its immediate environment.
<span>For equation A + 3B + 2C ---> 2D,
1 mole of A will produce 2 moles of D
3 moles of B will produce 2 moles of D, so 1 mole of B will produce 2/3 moles of D
2 moles of C will produce 2 moles of D, so 1 mole of C will produce 1 mole of D
If only 1 mole of B is present, only 2/3 moles of D can be produced. This is regardless of the number of moles of A and C. B is the limiting reactant and the maximum number of moles of D expected is 2/3.</span>
Answer:
Chemical processes have no effect on the nucleus otherwise we would be in deep truble. GOOD LESSONS ♡
Answer:
The mole fraction of ethanol is 0.6. A 10 mL volumetric pipette must be used for to measure the 10 mL of ethanol. The vessel should be clean and purged.
Explanation:
For calculating mole fraction of ethanol, the amount of moles ethanol must be calculated. Using ethanol density (0.778 g/mL), 10 mL of ethanol equals to 7.89 g of ethanol and in turn 0.17 moles of ethanol. The same way for calculate the amount of water moles (ethanol density=0.997 g/mL). 2 mL of water correspond to 0.11. The total moles are: 0.17+0.11=0.28. Mole fraction alcohol is: 0.17/0.28=0.6