They both have two electron shells
<h3>Further explanation</h3>
The period 2 element lies in the second row of the periodic system.
Consists of the elements: lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, and neon
atomic number : 3
electron configuration : [He] 2s¹
atomic number = number of proton=number of electron(in neutral atom)
So Li have 3 protons and 3 electrons
Because it fills the 2s orbital it has 2 shells
atomic number : 8
electron configuration : [He] 2s²2p⁴
So O have 8 protons and 8 electrons
Because it fills the 2s and 2p orbital it has 2 shells
So Lithium (Li) and Oxygen (O) are both have two electron shells
Answer:
The answer is
<h2>0.075 kg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
density = 762 kg/m³
We must first convert the volume from cm³ to m³

So 99 cm³ will be

So the mass of the material is

We have the final answer as
<h3>0.075 kg</h3>
Hope this helps you
The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
The balanced reaction of the given condition as follow :
Ca(OH)₂ + 2HC₂H₃O₂ ------> Ca(C₂H₃O₂)₂ + 2H₂O
from the equation it is clear that stoichiometry of Ca(OH)₂ is 1 and the stoichiometry of HC₂H₃O₂ is 2. therefore the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
Thus, The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
To learn more about stoichiometry here
brainly.com/question/13145466
#SPJ4