Answer:
The answer is 5.7 minutes
Explanation:
A first-order reaction follow the law of
. Where <em>[A]</em> is the concentration of the reactant at any <em>t</em> time of the reaction,
is the concentration of the reactant at the beginning of the reaction and <em>k</em> is the rate constant.
Dropping the concentration of the reactant to 6.25% means the concentration of A at the end of the reaction has to be
. And the rate constant (<em>k</em>) is 8.10×10−3 s−1
Replacing the equation of the law:
![Ln \frac{6.25}{100}.[A]_{0} = -8.10x10^{-3}s^{-1}.t + Ln[A]_{0}](https://tex.z-dn.net/?f=Ln%20%5Cfrac%7B6.25%7D%7B100%7D.%5BA%5D_%7B0%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t%20%2B%20Ln%5BA%5D_%7B0%7D)
Clearing the equation:
![Ln [A]_{0}.\frac{6.25}{100} - Ln [A]_{0} = -8.10x10^{-3}s^{-1}.t](https://tex.z-dn.net/?f=Ln%20%5BA%5D_%7B0%7D.%5Cfrac%7B6.25%7D%7B100%7D%20-%20Ln%20%5BA%5D_%7B0%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t)
<em>Considering the property of logarithms: </em>
Using the property:
![Ln \frac{[A]_{0}}{[A]_{0}}.\frac{6.25}{100} = -8.10x10^{-3}s^{-1}.t](https://tex.z-dn.net/?f=Ln%20%5Cfrac%7B%5BA%5D_%7B0%7D%7D%7B%5BA%5D_%7B0%7D%7D.%5Cfrac%7B6.25%7D%7B100%7D%20%3D%20-8.10x10%5E%7B-3%7Ds%5E%7B-1%7D.t)
Clearing <em>t </em>and solving:

The answer is in the unit of seconds, but every minute contains 60 seconds, converting the units:

Answer:
Here, acceleration due to gravity(a) is assumed as 10m/s².We can also take it as 9.8m/s²
Explanation:
<span>The problem has to do with oxidation states of the matter. The oxidation state of oxygen will always be -2 with the exception of peroxides which will have a state of -1. The overall balanced state of chemical compounds will be 0, so the oxidation state of Mn in MnO2 will be +4. The oxidation state of MnO4- will then be +7 to balance out to the negative one charge. The state change from +4 to +7 is 3, thus three electrons have to be lost in order for this to happen; a loss of a charge of -3 results in an increase of charge of 3. Oxidation is always the process of 'losing' electrons.
</span><span>E] MnO2(s) MnO4-(aq</span>
ok so this was really confusing, but i think i know the answer. D. ...hairy and ancient hermit crabs and swift, darting minnows and sometimes a
crumbling sand dollar.
Density is calculated as mass divided by volume. If we are given an ice cube of side length 8.00 cm, then the volume of the cube is equivalent to (8.00 cm)^3 = 512 cm^3. Since we have a given mass of 476 g, we can divide:
476 g / 512 cm^3 = 0.930 g/cm^3
So the density of the sample of ice is 0.930 g/cm^3.