Binary compounds consist of only two distinct elements, regardless of whether the compound is ionic or molecular. Water is a binary compound, as are calcium chloride, ammonia, and potassium iodide.
<span>An ionic binary compound consists of cations of one element and anions of another. KI is an ionic binary compound, composed of K cations and I anions. </span>
<span>A molecular binary compound does not consist of discrete ions, but of molecules. H2O is molecular, as is NH3.</span>
2.23 moles of propane react when 294 g of CO₂ is formed .
<h3>What is moles ?</h3>
Moles is a unit which is equal to the molar mass of an element.
A reaction is given
C₃H₈ +50₂ → 3CO₂ + 4H₂O
Grams of CO₂ formed = 294 gm
In moles = 294 /44 = 6.68 moles.
Let x be the moles of C₃H₈ is x
Mole ratio of CO₂ to C₃H₈ = 3 : 1
so
6.68 /x = 3/1
x = 6.68 /3 = 2.23 moles
Therefore 2.23 moles of propane react when 294 g of CO₂ is formed .
To know more about Moles
brainly.com/question/26416088
#SPJ1
Answer:
if the force applied increases
if the area of contact increases
Explanation:
Answer:
The different structures are shown in the attachment.
I and II - structural isomers
I and III - Structural isomers
I and IV - structural isomers
II and III - structural isomers
II and IV - structural isomers
III and IV - stereoisomers
Explanation:
The knowledge of Isomerism is tested here; there are two types of isomerism ; structural and stereoisomerism.
- Structural Isomers have similar molecular and different double bond positioning, these occurs mostly in ALKENE FAMILY.
- Stereo-isomers have the same molecular formular and similar patterns but differ in their spatial arrangement. trans and cis are typical examples of stereo-isomers.
From the question; Relationship between I and II is that they are structural isomers since they have the same molecular formula, but different bond atom arrangement and infact they are the same compound.
- Relationship between I and III is that they are structural isomers with similar molecular formular but differ in the double bond position.
- Relationship between I and IV is that they are structural isomers with similar molecular formula but different double bond arrangement.
- Relationship between II and III is that they are structural isomers with similar molecular formular but different double bond position
- Relationship between II and IV is that they are also structural isomers with the same molecular formular but different double bond position.
- Relationship between III and IV is that they are stereo-isomers with same molecular formula but different spatial arrangement, hence cis and trans.