Our year would now be 2.8 times longer, we would also be receiving only 1/4 of the energy from the sun that we currently do. This means that we’d now be out beyond the orbit of Mars and right at the edge of the asteroid belt, and things would rapidly get very cold with temperatures expected to drop by around 50 degrees Celsius on average, and that’s with our current atmospheric composition which would not be stable in the new conditions. And also, any living thing on earth would die.
D
Using the kinetic energy 1/2mv^2 formula
5*10^5 is the answer
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer:
Option d
The minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.
Explanation:
The resulting image in a telescope that will be gotten from an object is a diffraction pattern instead of a perfect point (point spread function (PSF)).
That diffraction pattern is gotten because the light encounters different obstacles on its path inside the telescope (interacts with the walls and edges of the instrument).
The diffraction pattern is composed by a central disk, called Airy disk, and diffraction rings.
The angular resolution is defined as the minimal separation at which two sources can be resolved one for another, or in other words, when the distance between the two diffraction pattern maxima is greater than the radius of the Airy disk.
The angular resolution can be determined in analytical way by means of the Rayleigh criterion.
(1)
Where
is the wavelength and D is the diameter of the telescope.
Notice that it is necessary to express the wavelength in the same units than the diameter.
⇒
Finally, equation 1 can be used.
Hence, the minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.
Given :
An object 50 cm high is placed 1 m in front of a converging lens whose focal length is 1.5 m.
To Find :
the image height (in cm).
Solution :
By lens formula :

Here, u = - 100 cm
f = 150 cm

Now, magnification is given by :

Therefore, the image height is 3 m or 300 cm.