Answer: The two answers are the machine will require an input greater than 100 ft.-lbs. And the other is The machine may accomplish the task faster than manual work.
Hope this help :3
Mathematically, to compute for the wavelength, λ, we have

where v is the velocity and f is the frequency.
As we can see here, given that velocity is constant, wavelength increases as frequency decreases. This shows that wavelength is inversely proportional to frequency.
Answer: Wavelength and frequency are inversely related to each other.
The temperature to which it must be heated in order to fit the shaft is 73.33 ⁰C.
<h3>
Linear expansivity </h3>
The temperature to which it must be heated in order to fit the shaft is calculated as follows;

where;
- ΔT is change in temperature
- ΔL is change in length = 50.04 mm - 50 mm = 0.04 mm
- α is coefficient of linear expansion
- L is original length
ΔT = (0.04)/(50 x 15 x 10⁻⁶)
ΔT = 53.3 ⁰C
<h3>Final temperature</h3>
T₂ - T₁ = ΔT
T₂ = ΔT + T₁
where;
- T₂ is final temperature
- T₁ is initial temperature
T₂ = 53.3 + 20
T₂ = 73.33 ⁰C
Learn more about linear expansivity here: brainly.com/question/14325928
#SPJ1
A) When a charge is moved in an electric field the work done (W) is calculated as charge*(change in potential). We can write W = q*V or V = W/q = 10/1 = 10V . This voltage is a difference in electric potential between 2 points within the field. If the charge is positive, and positive work is done upon it, then the final position is more positive than the original one.
<span>b) If a charge (Q) is released from rest and falls through a potential difference V, then its gain in energy (KE if no other force acts on the charged body) is q*V = 10J. This is the same as the work done in moving the charge to its new position in part (a), and is an example of the conservation of energy.</span>