1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
5

Calculate the acceleration using the formula acceleration = (final velocity - initial velocity) / time.

Physics
1 answer:
PtichkaEL [24]3 years ago
6 0

Answer:

10 km/hr/s

Explanation:

The acceleration of an object is given by

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time

For the car in this problem:

u = 0

v=60 km/h

t = 6 s

Substituting in the equation,

a=\frac{60 km/h-0}{6s}=10 km/h/s

You might be interested in
Describe an experiment to determine how the frequency of a vibrating string depends on the length of the string
Ksivusya [100]

Answer:

For a vibrating string, the fundamental frequency depends on the string's length, its tension, and its mass per unit length. ... The fundamental frequency of a vibrating string is inversely proportional to its length.

Explanation:

Sounds of a single pure frequency are produced only by tuning forks and electronic devices called oscillators; most sounds are a mixture of tones of different frequencies and amplitudes. The tones produced by musical instruments have one important characteristic in common: they are periodic, that is, the vibrations occur in repeating patterns. The oscilloscope trace of a trumpet's sound shows such a pattern. For most non-musical sounds, such as those of a bursting balloon or a person coughing, an oscilloscope trace would show a jagged, irregular pattern, indicating a jumble of frequencies and amplitudes.

A column of air, as that in a trumpet, and a piano string both have a fundamental frequency—the frequency at which they vibrate most readily when set in motion. For a vibrating column of air, that frequency is determined principally by the length of the column. (The trumpet's valves are used to change the effective length of the column.) For a vibrating string, the fundamental frequency depends on the string's length, its tension, and its mass per unit length.

In addition to its fundamental frequency, a string or vibrating column of air also produces overtones with frequencies that are whole-number multiples of the fundamental frequency. It is the number of overtones produced and their relative strength that gives a musical tone from a given source its distinctive quality, or timbre. The addition of further overtones would produce a complicated pattern, such as that of the oscilloscope trace of the trumpet's sound.

How the fundamental frequency of a vibrating string depends on the string's length, tension, and mass per unit length is described by three laws:

1. The fundamental frequency of a vibrating string is inversely proportional to its length.

Reducing the length of a vibrating string by one-half will double its frequency, raising the pitch by one octave, if the tension remains the same.

2. The fundamental frequency of a vibrating string is directly proportional to the square root of the tension.

Increasing the tension of a vibrating string raises the frequency; if the tension is made four times as great, the frequency is doubled, and the pitch is raised by one octave.

3. The fundamental frequency of a vibrating string is inversely proportional to the square root of the mass per unit length.

This means that of two strings of the same material and with the same length and tension, the thicker string has the lower fundamental frequency. If the mass per unit length of one string is four times that of the other, the thicker string has a fundamental frequency one-half that of the thinner string and produces a tone one octave lower.

7 0
3 years ago
For your senior project, you are designing a Geiger tube for detecting radiation in the nuclear physics laboratory. This instrum
Paha777 [63]

Answer:

Maximum linear charge density = 84.14 nC/m

Explanation:

Looking at this question, The electric field of a line charge of infinite length is given by : Er = (1/(2πεo)) x (λ/r)

r = the distance from the center of the line of charge

λ = the linear charge density of the wire.

Now looking at the equatiom, due to the fact that Er varies inveresely with r, its maximum value will occur at the surface of the wire where r = R, the radius of the wire:

And so, Emax = (1/(2πεo)) x (λ/R)

Let's make λ the subject of the equation and we get;

λ = 2πεo(REmax)

From the question, R = 0.55/2 = 0.275cm

Also, Emax = 5.50 × 10^(6) N/C

Let's take the value of the electric constant to be εo = 8.854 x 10^(-9) C^(2) / Nm^2

R = 0.275mm = 0.000275m

Plugging these values into the equation, we get;

λ = 2π x 8.854 x 10^(-12) x 0.000275 x 5.50 × 10^(6) = 84.14 nC/m

4 0
3 years ago
A capacitor with plates separated by a distance d is charged to a potential difference ΔVC. All wires and batteries are disconne
Tom [10]

Answer:

Explanation:

Initial separation of plate = d

final separation = 2d

The capacitance of the capacitor will reduce from C to C/2 because

capacitance = ε A / d

d is distance between plates.

As the batteries are disconnected , charge on the capacitor becomes fixed .

Initial charge on the capacitor

= Capacitance x potential difference

Q = C ΔV

Final charge will remain unchanged

Final charge = C ΔV

Final capacitance = C/2

Final potential difference = charge / capacitance

= C ΔV /  C/2

= 2 ΔV

Potential difference is doubled after the pates are further separated.

6 0
3 years ago
Convert the speed of light, 3.0 x 108 m/s, to km/s.
zhuklara [117]

Answer:

Answer:

I don't know

Explanation:

I don't know

Explanation:

Answer:

I don't know

Explanation:

I don't know

3 0
3 years ago
What is the difference between the B-field and the H-field?
Simora [160]
The H field is in units of amps/meter.  It is sometimes called the auxiliary field. It describes the strength (or intensity) of a magnetic field. The B field is the magnetic flux density.  It tells us how dense the field is.  If you think about a magnetic field as a collection of magnetic field lines, the B field tells us how closely they are spaced together. These lines (flux linkages) are measured in a unit called a Weber (Wb).  This is the analog to the electric charge, the Coulomb.  Just like electric flux density (the D field, given by D=εE) is Coulombs/m²,  The B field is given by Wb/m², or Tesla.  The B field is defined to be μH, in a similar way the D field is defined.  Thus B is material dependent.  If you expose a piece of iron (large μ) to an H field, the magnetic moments (atoms) inside will align in the field and amplify it.  This is why we use iron cores in electromagnets and transformers.
So if you need to measure how much flux goes through a loop, you need the flux density times the area of the loop Φ=BA.  The units work out like 
Φ=[Wb/m²][m²]=[Wb], which is really just the amount of flux.  The H field alone can't tell you this because without μ, we don't know the "number of field" lines that were caused in the material (even in vacuum) by that H field.  And the flux cares about the number of lines, not the field intensity.
I'm way into magnetic fields, my PhD research is in this area so I could go on forever.   I have included a picture that also shows M, the magnetization of a material along with H and B.  M is like the polarization vector, P, of dielectric materials. If you need more info let me know but I'll leave you alone for now!

3 0
3 years ago
Other questions:
  • A millionairess was told in 1992 that she had exactly 15 years to live. However, if she immediately takes off, travels away from
    5·1 answer
  • What is the magnitude of the electric force of attraction between an iron nucleus (q = +26e) and its innermost electron if the d
    15·1 answer
  • Which of the following best describes the first step in the formation of a hurricane?
    12·1 answer
  • 12) Photosynthesis is a chemical reaction where carbon dioxide and water react to form glucose (C6H12O6) and oxygen gas. Which r
    12·2 answers
  • Marlin Davies buys a truck for $28,000. In three years, the car depreciates 48% in value. How much is the car worth in three yea
    9·1 answer
  • What terms describes an atom's tendency to hold onto electrons
    5·2 answers
  • What is the longest wavelength of radiation with enough energy to break carbon-carbon bonds?
    9·1 answer
  • Suggest at least two reagents other than sodium borohydride that could be used to carry out the reduction of 9-fluorenone to 9-h
    6·1 answer
  • Worth BRAINLIEST if you help me
    5·1 answer
  • A cylindrical glass that is 10cm high is partially filled with water. You see the glass in two positions. What is the height of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!