Answer:
n = 2.58 mol
Explanation:
Given data:
Number of moles of argon = ?
Volume occupy = 58 L
Temperature = 273.15 K
Pressure = 1 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
1 atm × 58 L = n × 0.0821 atm.L/ mol.K × 273.15 K
58 atm.L = n × 22.43 atm.L/ mol.
n = 58 atm.L / 22.43 atm.L/ mol
n = 2.58 mol
He used a tube of mercury and marked the height of the mercury when placed in an ice bath as 0 degrees celsius, when he placed the tube in a boiling, he marked the height of mercury and called that 100 degrees celsius, he marked it linearly between 0-100 degrees celsius
It would have to be 40.0 only because it wouldn’t add up
Answer:
0.106 mol (3s.f.)
Explanation:
To find the number of moles, divide the mass of glucose (in grams) by its Mr. Glucose has a chemical formula of C6H12O6. To find the Mr, add all the Ar of all the atoms in C6H12O6.
Ar of C= 12, Ar of H= 1, Mr of O= 16
These Ar values can be found on the periodic table.
Mr of glucose= 6(12)+ 12(1) + 6(16)= 180
Moles of glucose
= mass ÷ mr
= 19.1 ÷ 180
= 0.106 mol (3 s.f.)
A hydrogen bond occurs between a hydrogen from one molecule and an oxygen from another molecule. Option D
<h3>What is the hydrogen bond?</h3>
The hydrogen bond is one that is responsible for association in molecules. It occurs when hydrogen is covalently bonded to a highly electronegative element such as oxygen, nitrogen or Sulphur.
Thus, a hydrogen bond occurs between a hydrogen from one molecule and an oxygen from another molecule. Option D
Learn more about hydrogen bonding:brainly.com/question/10904296?
#SPJ1