Answer:
An ionic bond is an attraction between ions of opposite charge in an ionic compound.
Salt, silt, and clay particles
Ionization energy (IE) is the amount of energy required to remove an electron.
If you observe the IEs sequentially, there is a large gap between the 2nd and 3rd. This suggests it is difficult to remove more than 2 two electrons. Elements that lose two electrons to become more stable are found in the Group 2A (2 representing the number of electrons in the outermost valence shell).
Remark
The balance numbers in front of Ag and AgNO3 are both 2. That number is in moles.
Rule: if the moles are the same in the equation, then whatever you are given for one, will be the same for the other. So you have 0.854 moles of Ag. You will also have 0.854 moles of AgNO3
Answer: 0.854 <<<<<
PH of a solution will be <span>higher than 7
</span>
Ammonium cyanide is a salt formed by hydrogen cyanide and ammonia. Ammonia is a weak base and hydrogen cyanide is a weak acid.
NH₄CN + H₂O ⇒ NH₃ + HCN
NH₄⁺ + H₂O -----> H₃O⁺ + NH₃
CN⁻ + H₂O -----> HCN + OH⁻
Although both compounds are weak electrolytes, NH₃ is somewhat stronger base than HCN is a strong acid, so the solution reacts alkaline. We can prove this using Ka and Kb values:
Ka(HCN) = 4.9 x × 10⁻¹⁰
Kb(NH₃) = 1.8 × 10⁻⁵<span>
Kw= </span>1.0 × 10⁻¹⁴
Let's first calculate Ka for NH₄⁺:
Ka(NH₄⁺) x Kb(NH₃<span>) = pKw
</span>Ka(NH₄⁺) = Kw/Kb(NH₃) = 5.6 x 10⁻¹⁰
Then, Kb for CN⁻:
Kb(CN⁻) x Ka(HCN) = pKw
Kb(CN⁻) = Kw/Ka(HCN) = 2 x 10⁻⁵
From this, we can see that the acid constant NH4⁺ is much lower than the base constant of CN⁻, which will say that the solution of NH₄CN will react slightly alkaline because of the higher presence of hydroxyl ions in solution.