Answer:
2. ( b ) zero
3. ( c ) 10 s
4. Uniform then decreasing
Explanation:
2.
Since the motion is uniform, initial and final velocity will be 0, hence acceleration will be zero.
3.
Initial velocity ( u ) = 5 m/s
Final velocity ( v ) = 35 m/s
Acceleration ( a ) 3 m/s^2
To find : Time ( t )
Formula : -
t = v - u / a
= 35 - 5 / 3
= 30 / 3
t = 10 s
Answer:
Efficiency = 52%
Explanation:
Given:
First stage
heat absorbed, Q₁ at temperature T₁ = 500 K
Heat released, Q₂ at temperature T₂ = 430 K
and the work done is W₁
Second stage
Heat released, Q₂ at temperature T₂ = 430 K
Heat released, Q₃ at temperature T₃ = 240 K
and the work done is W₂
Total work done, W = W₁ + W₂
Now,
The efficiency is given as:

or
Work done = change in heat
thus,
W₁ = Q₁ - Q₂
W₂ = Q₂ - Q₃
Thus,

or

or

also,

or

thus,

thus,

or

or
Efficiency = 52%
For any periodic wave
<span>v = f λ </span>
<span>where </span>
<span>v = velocity </span>
<span>f = frequency </span>
<span>λ = wavelength (distance between 2 successive crests) </span>
<span>This means that </span>
<span>λ = v/f </span>
<span>Assuming that v stays the same while f increases, λ must DECREASE.
I hope this helps
</span>
Answer:
Explanation:
Force = mass x acceleration

Force is always vector and acceleration also vector but the mass is a saclar quanity.
here, the direction of force vector is same as the direction of acceleration vector but the magnitude of force depends on the magnitude of mass of the body.
Is mass is more, force is also more.
Thus, the mass is like an indicator of the magnitude of force.