Answer:
1. <--> A.
2. <--> C.
3. <--> D
4. <--> B.
explanation: i know my science!
I'm not quite sure what happens to Fay so I didn't finish but hope it helps
(2^(1-γ)-1)/(1-γ) where γ is the heat capacity ratio, Cp/Cv. See attached image for the working.
http://prntscr.com/htqqte
Answer:
Explanation:
angular momentum of the putty about the point of rotation
= mvR where m is mass , v is velocity of the putty and R is perpendicular distance between line of velocity and point of rotation .
= .045 x 4.23 x 2/3 x .95 cos46
= .0837 units
moment of inertia of rod = ml² / 3 , m is mass of rod and l is length
= 2.95 x .95² / 3
I₁ = .8874 units
moment of inertia of rod + putty
I₁ + mr²
m is mass of putty and r is distance where it sticks
I₂ = .8874 + .045 x (2 x .95 / 3)²
I₂ = .905
Applying conservation of angular momentum
angular momentum of putty = final angular momentum of rod+ putty
.0837 = .905 ω
ω is final angular velocity of rod + putty
ω = .092 rad /s .
The effective acceleration or deceleration due to gravity depends on the inclined angle of the track relative to ground; the steeper the slope is the greater the effective acceleration.