The velocity of the ball and the man is 0.259 m/s
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, in an isolated system, the total momentum before and after the collision must be conserved. Therefore, for the ball-man system, we can write:
where:
is the mass of the ball
is the initial velocity of the ball
is the mass of the man
is the initial velocity of the man
is the final velocity of the man and the ball after the collision
Re-arranging the equation and substituting the values, we find the final velocity:

So, the man and the ball slides on the ice at 0.259 m/s.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
In odd nuclei, the left out proton or neutron will contribute to the spin of the nucleus.
Explanation:
The meaning of odd nuclei is atomic mass is odd.
A=odd number.
A=Z+n
Here, Z is proton either it will odd or n will odd which is neutron.
Now according to the shell model the left out proton or neutron will contribute to the spin and parity.
For example,
Take the case of isotope of nitrogen-15.
Here Z is 7, and n is 8 will not contribute in spin.
Now, for Z=7.

Here,

and, L=1.
Fort parity,

Put the value of L.
Parity will be -1.
Now, spin will be
.
That's the cool thing about free fall. The amount of time it takes to fall remains the same.
In this case, a ball that is simply dropped from rest will fall at the same rate as a ball that had some umph in the horizontal direction.
Answer:
6.67×10¯⁹ A
Explanation:
From the question given above, the following data were obtained:
Quantity of electricity (Q) = 2 μC
Time (t) = 5 mins
Current (I) =?
Next, we shall convert 2 μC to C. This can be obtained as follow:
1 μC = 1×10¯⁶ C
Therefore,
2 μC = 2 μC × 1×10¯⁶ C / 1 μC
2 μC = 2×10¯⁶ C
Next, we shall convert 5 mins to seconds. This can be obtained as follow:
1 min = 60 secs
Therefore,
5 min = 5 min × 60 sec / 1 min
5 mins = 300 s
Finally, we shall determine the current in the circuit. This can be obtained as follow:
Quantity of electricity (Q) = 2×10¯⁶ C
Time (t) = 300 s
Current (I) =?
Q = It
2×10¯⁶ = I × 300
Divide both side by 300
I = 2×10¯⁶ / 300
I = 6.67×10¯⁹ A
Thus, the current in the circuit is 6.67×10¯⁹ A
The answer is negative 14